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1.  INTRODUCTION

The introduction of marine invasive species has
accelerated in the past few decades by an increasing
trend of trade and transportation across oceans and
continents (Hulme 2009, Katsanevakis et al. 2016).
Biological invasions are among the major causes of
biodiversity loss worldwide, leading to important
impacts at the social, economical and human health
levels (Vitousek et al. 1997, Sala et al. 2000). Since
the eradication of marine invasive species is virtually
impossible (Hayes et al. 2005, Katsanevakis et al.

2013, Werschkun et al. 2014), prevention, early de -
tection and rapid response strategies are the best
management alternatives to avoid their impacts (Gal-
lien et al. 2010, Jiménez-Valverde et al. 2011a). For
these strategies to be effective, limited resources and
efforts must focus on specific vectors, pathways, spe-
cies and locations (Hayes et al. 2005, Inglis et al.
2006). Species distribution models (SDMs) provide
spatially explicit information to support decisions
directed at preventing and managing biological
invasions (Peterson 2003, Franklin 2010, Guisan et al.
2013, Leidenberger et al. 2015, Goldsmit et al. 2018).
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The most commonly used SDMs are based on cor-
relational techniques (correlative SDMs, hereafter
referred to simply as SDMs), and rely on assumptions
that have motivated criticism on their predictive
 ability. Firstly, the ‘quasi-equilibrium’ assumption
requires occurrence data to be in equilibrium with
the environment (i.e. the species occupies all of the
suitable areas and is absent from the unsuitable
areas within a given range) (Guisan & Thuiller 2005,
Gallien et al. 2010). In the case of invasive species,
especially during the early phase of the invasion, this
assumption is rarely met. Second, when models are
transferred in space or time, niches are assumed to
remain conserved in the original (i.e. native in the
case of invasive species) and the novel (i.e. invasive)
ranges. Recent insights into these issues have shown
that SDMs perform well under non-equilibrium situ-
ations (Barbet-Massin et al. 2018), but there is little
understanding of how models perform when trans-
ferred in space under a scenario in which niches are
not conserved.

The tendency to retain ancestral ecological re -
quirements is termed ‘niche conservatism’ (Wiens &
Graham 2005), and implies that the environmental
conditions where a species occurs in the invaded
range are similar to those occupied by the species in
its native range. Niche shifts occur when niches are
not conserved, and an increasing amount of evidence
suggest that shifts are not uncommon during biologi-
cal invasions (Broennimann et al. 2007, Fitzpatrick et
al. 2007, Schwindt et al. 2009, Callen & Miller 2015,
Rodrigues et al. 2016). However, in most cases, these
shifts do not refer to fundamental but to realized
niche shifts. The fundamental niche (FN) is the set of
combinations of environmental variables for which
population growth rate of a species is positive
(Soberón & Nakamura 2009), and depends exclu-
sively on the species’ ecological requirements; thus,
it is expected to be highly invariant within short to
moderate (tens to hundreds of years) time spans
(Peterson 2011). The realized niche (RN) represents a
subsample of the FN that exists in a given region and
time and is used by the species after biotic interac-
tions are taken into account (Fig. 1a) (Soberón &
Nakamura 2009). Shifts in the RN can be driven by
changes in the type and/or intensity of biotic inter -
actions or in dispersal limitations. The relative fre-
quency and importance of these factors in niche shift-
ing are highly debated, and the prevailing idea is
that biotic interactions do not determine the distribu-
tion of a species at a macro-ecological scale (Pearson
& Dawson 2003), although contrasting evidence may
suggest the opposite (Araújo & Luoto 2007). 
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Fig. 1. (a) ‘BAM’ diagram (Soberón & Peterson 2005) show-
ing the factors that constrain the distribution of a species,
where B represents biotic interaction constraints, A repre-
sents abiotic or environmental constraints, also regarded as
the fundamental niche, and M represents movement (or dis-
persal) constraints, which depend on geographical and his-
torical limitations. The species occurs within the  realized
distribution (G0), where all of these constraints are favor-
able, and G1 denotes the invasible area, which is the unoc-
cupied portion of the potential distribution. (b) When a spe-
cies is introduced into a novel environment, the movement
constraints for the potential niche (red line) are relaxed and
the species can explore a new set of environmental  conditions
and biotic interactions that were previously unavailable, re-
sulting in a realized niche shift. (c) Schematic representation
of niche shift components within the environmental space, fol-
lowing Guisan et al. (2014) and showing the distinction be-
tween niche expansion and enlargement and between niche
re striction and unfilling. Five different components can be
distinguished: niche stability (St): proportion of the native
niche (blue oval) overlapping with the exotic niche (red
oval); niche expansion (Ex): proportion of the invasive niche
non-overlapping with the native niche but within the analog
conditions (grey area, conditions that are similar in native
and invaded ranges); niche unfilling (Un): proportion of the
native niche that does not overlap with the invasive niche
within the analog conditions; niche restriction (Res): propor-
tion of the native niche non-overlapping with the invasive
niche outside the analog conditions; niche enlargement
(Enl): proportion of the invasive niche non-overlapping with 

the native niche, outside the analog conditions
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Relatively less controversial are the effects that dis-
persal limitations have on the RN of a species on a
broad spatial scale. These limitations imply physical
and/or historical constraints to the range of environ-
mental conditions that a species can explore (Barve
et al. 2011, Acevedo et al. 2012), restricting the RN to
the available climatic conditions within those limits.
When a species is introduced into a novel range, the
dispersal constraints fall down, and the accessible
area increases. This increment may allow the species
to explore both environmental conditions and biotic
interactions that were previously unavailable to the
species in the native area (Fig. 1b). Under this sce-
nario, RN shifts are expected even when the FN
remains conserved, driven by the environmental
conditions that emerge in the in vaded range (i.e.
novel environments). In a similar vein, environmen-
tal conditions found in the native range may no
longer be available in the invaded one, leading to the
occurrence of niche shifts. Thus, when a species is
introduced into a novel region, different components
of the niche can provide clues to understanding the
relationship between the environmental availability
and the RN of the species in each range (Fig. 1c).

The grey side-gilled sea slug Pleurobranchaea
maculata (Quoy & Gaimard, 1832) is a good candi-
date to evaluate model performance under a niche
shift scenario. Native to New Zealand and southeast-
ern Australia, this species has recently reached the
shores of Argentina (Farías et al. 2015, 2016, Battini
2016) and has spread along the coast at a rate of ca.
330 km yr−1 (Farías et al. 2016). This slug is an oppor-
tunistic scavenger and predator of a diverse group of
soft-bodied marine invertebrates (Ottaway 1977,
Willan 1984, Bökenhans et al. 2019), and no preda-
tors are known so far other than cannibalistic interac-
tions (Bökenhans et al. 2019), which may contribute
to self-regulating the population both in the native
and the invaded range. In 2009, high levels of tetro -
dotoxin (TTX) were detected in individuals of P. mac-
ulata that were washed up onto beaches of New
Zealand, killing several dogs (McNabb et al. 2010).
Further research identified P. maculata as the source
of TTX, and proposed the occurrence of bioaccumu-
lation through the food chain (Wood et al. 2012a,b,
Khor et al. 2014, Salvitti et al. 2015a,b). Although
it remains unclear why or how the prevalence of
TTX varies among native populations of P. maculata,
ongoing research has recently revealed that invasive
slugs from Argentina accumulate both TTX and
other locally available neurotoxins (Farías et al. 2015,
N. Farías unpubl. data); thus, there is a clear need for
coastal scientists and environmental managers to

better understand its ecological behavior within the
invaded region. In this study, we compared the per-
formance of 3 different SDM techniques to predict
the invasive realized distribution of niche-shifting P.
maculata based on native data only, and discuss their
implications for anticipating its potential distribution
around the globe.

2.  METHODS

2.1.  Occurrence data

We obtained occurrence data for Pleurobranchaea
maculata from both native and invaded ranges
(Broennimann & Guisan 2008, Jiménez-Valverde et
al. 2011a) through the Global Biodiversity Informa-
tion Facility (www.gbif.org), the Ocean Biogeo-
graphic Information System (www.iobis.org) and
specific scientific literature (from Google Scholar,
PubMed, Scielo, Scopus and Aquatic Sciences and
Fisheries Abstracts [ASFA]), by searching for ‘Pleuro-
branchaea maculata’, ‘Pleurobranchaea maculate’ (a
common misspelling) and ‘Pleurobranchaea nova -
ezel andiae’ Cheeseman, 1879, a formerly used syn-
onym. When a record lacked coordinates but the
description of the sampling location was sufficiently
accurate, we georeferenced it using Google Earth
Pro version 7.3.2.5491. In order to maximize the
 accuracy of our study, we intentionally excluded
records from eastern Asia due to unresolved taxo-
nomical uncertainties between P. maculata and P.
japonica Thiele, 1925 (Jensen 1998) (see Table S1 in
the  Supplement at www. int-res. com/ articles/ suppl/
m612p127 _ supp .pdf). To avoid overestimating the
evaluation parameters, we corrected for spatial auto-
correlation among the environmental predictors for
the occurrence data by removing the records that
were at a distance of less than 60 km apart, as it was
the minimum distance at which Mantel r was non-
significantly different from 0. Mantel correlograms
were constructed using the ‘ecodist’ package (Goslee
& Urban 2017) in R. After correcting for spatial auto-
correlation, we ob tained 79 occurrences (60 native
and 19 invasive) which we used for the SDMs.

2.2.  Environmental predictors

We considered environmental predictors directly
affecting the survival and reproduction of P. macu-
lata. Temperature and salinity are the most important
abiotic environmental variables directly affecting
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survival, reproduction, metabolism and distribution
of marine invertebrates (Gibson & Chia 1995, Zacherl
et al. 2003, Compton et al. 2007, 2010, Verween et al.
2007, Bosch et al. 2018). We considered mean depth,
sea temperature (annual mean and range), salinity
(annual minimum and range), current velocity (an -
nual maximum and range) and dissolved oxygen (an -
nual minimum and range) (Table 1). As monthly min-
imum and maximum and annual mean values were
very highly correlated for temperature, salinity and
dissolved oxygen, we selected the most important vari -
able according to preliminary model runs to avoid
redundancy. We derived the environmental predic-
tors from the Bio-Oracle database (Assis et al. 2018),
as 5 arcmin raster layers, at the average benthic
depth (average depth within each cell).

2.3.  RN shift of P. maculata

In order to characterize native and invasive niches
of P. maculata and identify potential signs of niche
shift, we followed the ‘centroid shift, overlap, unfill-
ing and expansion’ (COUE) scheme (Broennimann et
al. 2012, Guisan et al. 2014). Based on the environ-
mental predictors, we conducted a principal compo-
nent analysis using environmental data extracted
from occurrence data and the available climate
(PCA-env). We restricted the native available climate
using a criterion based on large marine ecosystems
(LMEs, available at https://www.st.nmfs.noaa.gov/
ecosystems/ lme/index), and extracted data from the
LMEs that contained records of P. maculata and from
LMEs immediately adjacent to these, masked to a
depth of 300 m, which is the maximum depth re -
corded for P. maculata (Wood et al. 2012b). For the
selection of the background in the invaded range, we
accounted for the maximum potential dispersal range

by generating a buffer area for each point with a
radius given by the product of the estimated disper-
sal rate of 330 km yr−1 (Farías et al. 2016) and the
number of years since that record was observed
(Barve et al. 2011). Finally, we masked the resulting
area to the maximum depth recorded for P. maculata
and used that area as the invasive background.

Based on PCA-env, we tested for niche similarity
and calculated niche components using the ‘ecospat’
package (Broennimann et al. 2018) in R. Prior to the
calculation, we slightly modified the original script
(see the Supplement), so that it provided the follow-
ing parameters: niche expansion, unfilling, stability,
en largement and restriction (Fig. 1c), both range spe-
cific (relative to native or exotic ranges) and for the
pooled ranges. Both enlargement and restriction were
previously recognized but undefined (Guisan et al.
2014), and were not previously included in the analy-
ses. These 2 parameters refer to the portions of the
invasive and native niches, respectively, which do
not overlap with the available climate in the other
range, and must therefore be discriminated from ex -
pansion and unfilling, which we set aside to define
portions of each niche in the analog climates. Niche
similarity tests whether the overlap between the
native and exotic niches is greater than expected by
chance (Broennimann et al. 2012). For the calcula-
tion, artificial niches are created by shifting the cen-
ter of the entire observed density of occurrences
within 1 range, and comparing the overlap between
simulated niches and the observed niche in the other
range. Niche overlap is estimated using Schoener’s D
(Schoener 1970, Warren et al. 2008, Broennimann et
al. 2012), which compares the amount of overlap and
varies between 0, when no overlap is observed, and
1, when both niches overlap completely. A significant
D means that the niche in one range is less similar to
the niche in the other range than expected by chance
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No.              Variable name             Description                                                                                                               Units

1                  Bathymetry                  Average depth of the seafloor                                                                                 m
2                  CurrVel max                Maximum sea water velocity at the mean bottom depth                                     m s−1

3                  CurrVel range             Range of the sea water velocity at the mean bottom depth                                 m s−1

4                  DissOx min                  Minimum dissolved oxygen concentration at the mean bottom depth               mmol m−3

5                  DissOx range               Dissolved oxygen concentration range at the mean bottom depth                     mmol m−3

6                  Salinity min                 Minimum sea water salinity at the mean bottom depth                                       PSS
7                  Salinity range              Range of the sea water salinity at the mean bottom depth                                  PSS
8                  Temp. mean                 Mean sea water temperature at the mean bottom depth                                     °C
9                  Temp. range                Range of the sea water temperature at the mean bottom depth                         °C

Table 1. Environmental predictors used to model the potential distribution of Pleurobranchaea maculata, derived from the Bio-
ORACLE database (Assis et al. 2018) at a spatial resolution of 20 arcmin. ‘No.’ refers to the numbers used in Fig. 2b. Variables 

refer to annual maximums, minimums, means and ranges for the 2010−2014 period, except for bathymetry
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(Broennimann et al. 2012). For each test, we per-
formed 100 simulations in order to compute the prob-
ability of the observed D. Niche stability, expansion,
enlargement, unfilling and restriction were calcu-
lated to account for the distinct components of niche
shift (Guisan et al. 2014).

2.4.  Modeling workflow

In order to compare the performance of the models,
we used native data to calibrate the SDM and inva-
sive data to test them. For each run of each model, we
randomly split both native occurrence and back-
ground data in half, and used one half to calibrate the
SDM and the other to generate an environmental
niche model (ENM) based on the scores of the PCA-
env. Invasive data were also included in the ENM,
and in order to maintain the native to invasive data
ratio, we only used half of the invasive data to
 calibrate the ENM. We then thresholded the global
projection of the SDM into a binary presence/
absence map and projected it on the ENM using the
scores of the PCA-env. In the environmental space,
we estimated niche dynamics between native or
invasive niches and the output of the SDM. Assum-
ing the species is in a quasi-equilibrium state within
the native range but not necessarily in the invasive
one, SDM should simultaneously (1) maximize the
overlap with the native niche, while minimizing
underprediction or overprediction, and (2) maximize
the overlap with the invasive niche. To compare the
performance of the modeling techniques, we esti-
mated 3 parameters derived from the modified
COUE scheme: model accuracy (A), model pre-
dictability (P) and overfitting (O), which were calcu-
lated as follows:

A = SN × (SN + EN + UN + REN)−1 (1) 

P = SI × (SI + UI)−1 (2) 

O = (EN + ENN) × (EN + ENN + SN)−1 (3)

where S is stability, E is expansion, U is the unfilling,
EN is the enlargement, and RE is the restriction, com-
puted for the native (N) or invasive (I) ranges compared
to model predictions. Note that the quasi- equilibrium
assumption is not required in the invaded range, and
that we did not consider enlargement in Eq. (1) be -
cause areas where enlargement occurred do not a
priori represent commission errors. However, to ac -
count for the effect of enlargement, we computed
model over fitting, which we defined as the propor-
tion of en largement and expansion relative to stabil-

ity. Model projections in novel environments are con-
sidered unreliable (Guisan et al. 2014), so we com-
pared the performance of the models using a re -
stricted projection, which was constrained to
non-novel environments, or an unrestricted one,
which was projected worldwide. To restrict model
projections, we performed multivariate environmen-
tal similarity surface (MESS) analyses during each
run of the models (Elith et al. 2010), and restricted the
projections to areas with positive MESS values. The
MESS estimates the similarity between the environ-
mental conditions in the entire projected area and
those in the calibration range. Negative MESS values
indicate environmental conditions that differ from
those used to calibrate the model. For the second
series of analyses, the model was projected to the
global extent. The extent of the projected models was
included in the ENM to calculate niche components.

2.5.  SDMs

We modeled the potential distribution of P. macu-
lata using 3 different algorithms: Bioclim, Maha-
lanobis distance and the maximum entropy method
(Maxent). We performed Maxent models with the
whole set of background data (Maxent) and with an
equal number of presences and absences (Maxent
_0.5), in order to maintain a prevalence (i.e. presence
to pseudoabsence ratio) of 0.5 (Lobo et al. 2008). Both
Bioclim and Mahalanobis distance are presence-only
methods, which are preferred when reliable absence
data are unavailable and the aim is to model poten-
tial distributions be cause they do not require absence
or pseudoabsence data (Jiménez-Valverde et al.
2011a) and are thus free of assumptions about contin-
gent absences (i.e. absence due to disturbance, sam-
pling bias, geographical or historical constraints).
Maxent does re quire pseudo absences, but outper-
forms other methods when using few occurrences
(Pearson et al. 2007) and when models are trans-
ferred into novel environments when appropriate
thresholds are used (Peterson et al. 2007). We sam-
pled background data using an environmental sys-
tematic sampling design that maximizes its environ-
mental coverage (Hattab et al. 2017). To delimit the
background-sampling extent, we followed the same
criteria as mentioned for the PCA-env. We sampled
600 background points that represented a 10-fold
increase relative to native occurrence data. We in -
cluded these background data to estimate the MESS
for Bioclim and Mahalanobis distance methods. We
ran the models using the ‘dismo’ package (Hijmans
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et al. 2017) in R. As threshold selection directly influ-
ences modeling output when projecting binary maps,
we compared model performance using 4 recom-
mended threshold criteria: minimum and tenth per-
centile training presence threshold, maximum sum of
sensitivity and specificity (Liu et al. 2013) and the
‘Boyce’ threshold, which is estimated as the suitabil-
ity level at which the predicted to expected ratio is
equal to 1 (Hirzel et al. 2006).

We ran 10 replicates of each algorithm and
threshold criteria to compute model performance.
We compared accuracy, predictability and overfit-
ting among algorithms, threshold levels and projec-
tion restriction using generalized linear models with
a beta distribution. Predictability values were trans-
formed prior to the analyses using (x × (n −1) + 0.5) / n
transformation, where n is the sample size (Smith-
son & Verkuilen 2006). We compared the differ-
ences among algorithms or threshold levels using
simultaneous tests for general linear hypotheses,
performed using the ‘multcomp’ package (Hothorn
et al. 2017) in R. When the interaction between
algorithm and restriction was significant, we com-
pared threshold levels and projection restriction for
each algorithm. We ran the models in the ‘betareg’
package (Zeileis et al. 2018) in R, and used the min-
imum Akaike’s information criterion (AIC) for model
selection.

2.6.  Final potential distribution models

For the final model, we used the best performing
alternatives derived from the previous section and
modeled the global potential distribution of P. macu-
lata using both native and invasive data. We ran the
models as previously described and evaluated them
by using the Boyce index (Boyce et al. 2002), which is
the best evaluation parameter for presence-only
SDMs (Boyce et al. 2002, Hirzel et al. 2006, Petit-
pierre et al. 2012) and the area under the receiver
operating characteristics (ROC) curve (AUC), which
was estimated using background and calibration
data for each model. For Bioclim and Mahalanobis
distance, we determined the influence of each envi-
ronmental predictor as the drop in the Boyce index
value when the values of the respective predictor
were randomly permuted. For Maxent models, we
determined the variable importance using the per-
mutation importance parameter, which is computed
as the drop in the AUC values when the values for
each predictor are randomly permuted on training
presence and background data (Phillips et al. 2006).

3.  RESULTS

3.1.  RN shift

The first 2 axes of the PCA-env accounted for
54.8% (PC1 = 39.2%, PC2 = 15.6%) of total variation
(Fig. 2). The invasive background showed a broader
range of environmental conditions than the native
background, and it shifted towards areas with a
greater variability in dissolved oxygen, temperature
and salinity, as shown by the background centroid
shift vector (Fig. 2). Only a small fraction (11%) of the
pooled niches corresponded to stability, which repre-
sented 8% of the native niche and 15% of the inva-
sive niche. The larger fractions of the pooled niches
corresponded to unfilling (58%) and enlargement
(28%), while there was no expansion and only a
small portion (3%) corresponded to restriction. The
native and invasive niches were more similar than
ex pected by chance, as a niche similarity test showed
that niche overlap was greater than expected for ran-
domly created niches with the same pattern but dif-
ferent centroid position (Schoener’s D = 0.13, p =
0.11).
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Fig. 2. (a) PCA using environmental data (PCA-env) of the
first 2 principal components (total variation explained is
54.8%) showing the 99% (solid lines) and 75% (dashed
lines) percentiles of the environmental availability in the
invaded (green lines) and the native (blue lines) ranges.
Invasive and native niches are represented as green and
blue areas, respectively, and niche overlap is represented in
yellow. Red solid and dashed arrows represent niche and
range centroid shifts, respectively. Native occurrences are
shown as filled circles, invasive ones as open triangles and
the first record in the invasive area as an asterisk. (b) Contri-
bution of each environmental predictor to the principal 
components. Environmental variables are given in Table 1 
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3.2.  Accuracy, predictability and
overfitting

Bioclim models were significantly
more accurate than Mahalanobis dis-
tance and both models constructed
with Maxent (Table 2) at representing
the native niche of Pleuro bran ch -
aea maculata when calibrating with
native data only, achieving an accu-
racy of between 81 and 97% (mean =
90%) (Fig. 3). Accuracy was unaf-
fected by the restriction of model pro-
jections to non-novel environments
(Table 2), and there were no differ-
ences among threshold levels. Despite
this greater accuracy, Bioclim models
were unable to predict the invasive
distribution of P. maculata in the
southwestern Atlantic (SWA) (Fig. 4).
In contrast, higher predictability was
achieved by Maxent_0.5, which man-
aged to predict the whole niche of P.
maculata in the invaded range (Fig. 4).
The effect of projection restriction on
model predictability varied depending
on the algorithm. Restriction had no
effect on models constructed with Bio-
clim (Table 2) but it did when using
Mahalanobis distance, Maxent and
Maxent_0.5 (Table 2, Fig. 3). Thresh-
old levels had no effect on model pre-
dictability for Mahalanobis distance or
Maxent_0.5, but they did for Bioclim
and Maxent. Minimum training pres-
ence threshold resulted in slightly but
significantly worse predictability in
the case of Bioclim, but was better for
Maxent (Table 2). The higher predic-
tive ability achieved by Maxent _ 0.5
came at the cost of greater model
overfitting (Fig. 3), which resulted in
the prediction of large suitable areas
for P. maculata in the SWA (Fig. 4). As
for predictability, restriction produced
different effects on model overfitting
according to the algorithm used. Pro-
jection restriction had no effect on
model overfitting when using Bioclim
or Mahalanobis distance, but it did
when modeling with Maxent and
Maxent_0.5 (Table 2). Among thresh-
olds, minimum training presence and
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Variable            Source of variation                    Estimate           z            GLH

Accuracy          Intercept                                      2.141   20.887***       
                         Mahalanobis                               −0.472    −4.626***      a
                         Maxent                                        −0.890   −9.062***     b
                         Maxent_0.5                                  −0.895   −9.122***     b
                         Restriction                                    0.017        0.269            
                         Boyce                                           −0.047        −0.510            
                         MaxSSS                                       0.016        0.171            
                         Minimum training presence      −0.113        −1.232            
Predictability   Bioclim                                                                                  
                         Intercept                                      −0.619    −2.799**        
                         Restriction                                   −0.217        −1.075            
                         Boyce                                           −0.414        −1.460           a
                         MaxSSS                                       −0.237        −0.845           a
                         Minimum training presence      −0.571      −1.995*         a
                         Mahalanobis distance                                                         
                         Intercept                                      −0.058        −0.475            
                         Restriction                                   −0.390      −2.230*          
                         Maxent                                                                                  
                         Intercept                                      1.132   3.863***       
                         Restriction                                    1.400   4.868***       
                         Boyce                                           2.609   6.464***      a
                         MaxSSS                                       0.572        1.522           b
                         Minimum training presence      2.302   5.599***      a
                         Maxent_0.5                                                                           
                         Intercept                                      0.882     2.781**        
                         Restriction                                    3.071   8.349***       
                         Boyce                                           0.428        1.264            
                         MaxSSS                                       0.075        0.222            
                         Minimum training presence      0.390        1.151            
Overfitting       Bioclim                                                                                  
                         Intercept                                      −2.435   −12.441***      
                         Restriction                                   −0.043        −0.252            
                         Boyce                                           −0.030        −0.124            
                         MaxSSS                                       0.000        0.000            
                         Minimum training presence      0.000        0.000            
                         Mahalanobis distance                                                         
                         Intercept                                      −2.316   −9.184***      
                         Restriction                                   −0.027        −0.128            
                         Boyce                                           0.024        0.082            
                         MaxSSS                                       0.000        0.000            
                         Minimum training presence      0.000        0.000            
                         Maxent                                                                                  
                         Intercept                                      −1.508   −10.204***      
                         Restriction                                    0.768   6.176***       
                         Boyce                                           0.503     2.885**       a
                         MaxSSS                                       0.025        0.138           b
                         Minimum training presence      0.439      2.512*         a
                         Maxent_0.5                                                                           
                         Intercept                                      −1.467   −9.582***      
                         Restriction                                    1.029   7.856***       
                         Boyce                                           0.249        1.366           a
                         MaxSSS                                       0.052        0.280           b
                         Minimum training presence      0.245        1.347          ab

Table 2. Results for beta regression models assessing the effects of modeling al-
gorithm, restriction and threshold criteria on model accuracy, predictability and
overfitting. Significance is indicated with asterisks (*p < 0.05, **p < 0.01, ***p <
0.001). When appropriate, results from comparisons using simultaneous tests
for general linear hypotheses (GLH) among algorithms and threshold criteria
are indicated with letters, where different letters indicate differences with a
significance level of 0.05; maxSSS: maximum sum of sensitivity and specificity
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Boyce produced greater model overfitting for Maxent
(Table 2, Fig. 3).

3.3.  Final models

Final models were calibrated using both native and
invasive data and performed based on Bioclim and

Maxent_0.5, as they were the most
accurate and with the highest pre-
dictability, respectively (Fig. 5). The
mean Boyce index and mean AUC
evaluation parameters were, respec-
tively, 0.75 ± 0.08 (SD) and 0.95 ± 0.01
for Bioclim, and 0.91 ± 0.05 and 0.97 ±
0.02 for Maxent_0.5 (Table 3). Bioclim
predictions represented a subsample
of the areas predicted as suitable by
Maxent_0.5 (Fig. 5), and only a very
small fraction of the entire suitable
area was predicted solely by Bioclim.
The hotspots for the establishment of
P. maculata are the North and Baltic
Seas, the Sea of Japan, the northwest-
ern Atlantic and the southeastern At -
lantic (Fig. 5). Variable importance
differed according to the different
algorithms (Fig. 6). However, temper-
ature annual mean and range and
salinity annual range were important
predictors for all modeling techniques.
Bathymetry was important for all algo-
rithms except Mahalanobis distance,
and for Bioclim, minimum dissolved
oxygen and annual range in dissolved
oxygen were also important predictors
(Fig. 6).

4.  DISCUSSION

Our study revealed that environ-
mental availability played a key role
in the RN shift of Pleurobranchaea
maculata during its introduction in the
SWA. Novel environmental conditions
found in the in vaded range, which
were unavailable in the native range
due to dispersal limitations, favored
niche enlargement across the SWA.
Indeed, when ac counting for environ-
mental availability, the invaded niche
represented only a small portion of the

native one. Whether niche shifts are common (Fitz-
patrick et al. 2007, Gallagher et al. 2010, Mandle et
al. 2010, Hill et al. 2017, Wang et al. 2017) or rare
(Peterson 2011, Petitpierre et al. 2012, Strubbe et al.
2013, Liu et al. 2017, Sales et al. 2017, Ribas et al.
2018) events happening during the bioinvasion pro-
cess remains a matter of debate. Frequently, behind
this contrasting evidence lie conceptual differences
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specifically associated with environmental availabil-
ity. While several studies have considered the effect
of environmental availability (Petitpierre et al. 2012,
Hill et al. 2017, Liu et al. 2017, Sales et al. 2017, Ribas
et al. 2018), others have not (Fitzpatrick et al. 2007,
Gallagher et al. 2010, Mandle et al. 2010, Wang et al.
2017), and this may reflect some of the observed dif-
ferences.

Although there has been much improvement since
the appearance of the COUE scheme used here
(Guisan et al. 2014), we are convinced that further
niche decomposition, including and computing niche
enlargement and restriction, will continue to en -
hance our understanding of the role that dispersal
limitations, biotic interactions and/or rapid adapt-
ability can have on the niche changes of invasive
species. The incorporation of niche enlargement and
restriction is important because the causes that
underlie them may differ from those producing
expansion and unfilling. Niche expansion and niche
unfilling are produced by (1) changes in biotic inter-
actions, (2) the invasive species not reaching the
quasi-equilibrium state within the invaded range, or

(3) sampling bias. During the early phase of inva-
sions, species are rarely at equilibrium with the envi-
ronment and therefore niche unfilling may be an
important component of the observed niche shift
(Sales et al. 2017), as occurred in our study. Once a
species has reached the quasi-equilibrium state at
the end of the expansion process, both niche expan-
sion and unfilling can provide clues on novel biotic
interactions that may favor or impair, respectively,
the fitness of the invasive species in the invaded
range, assuming there is no sampling bias in the
occurrence records. Niche restriction and enlarge-
ment result from changes in the available environ-
mental conditions, which do not imply changes in the
species’ use of the environment. Unlike expansion
and unfilling, which are greatly unpredictable, en -
largement and restriction depend on the relationship
between the niche and the available environmental
conditions in the native and the invaded range. It has
been argued that species with a more restricted dis-
tribution, such as endemic species, are more likely to
undergo niche shifts when introduced to a novel
environment (Li et al. 2014). However, these species
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Fig. 4. Predicted habitat suitability for Pleurobranchaea maculata (solid red areas) based on (a,b) Bioclim and (d,e) Maxent_0.5
models, calibrated using invasive data and the maximum training sum of sensitivity and specificity as a threshold criterion,
and projected in the native (a,d) and the invaded (b,e) range. (c,f) PCA using environmental data (PCA-env) showing the
native (blue area) and invasive (green area) niches, the 75 and 99% percentiles of available climates in each range as (solid 

and dashed lines, respectively) and the predicted suitability (red area) for Bioclim and Maxent_0.5
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are more likely to have environmental rather than
dispersal constraints within the native range, and
then the RN accurately resembles the potential niche,
and niche expansion, enlargement or unfilling are
unlikely to occur.

Correlative SDMs face a very challenging scenario
when niche enlargement occurs, and this is why
model projections in novel environments are consid-
ered unreliable (Guisan et al. 2014). We found that
model accuracy (i.e. the ability of the models to pre-
dict the distribution of a species in equilibrium with
the environment) did not vary whether projections
were restricted to non-novel environments or not,
regardless of the algorithm used. To the contrary,
predictability was higher when projections were
unrestricted, but only when using Maxent, and this
was associated with a greater overfitting. For pres-
ence-only methods, which show more constrained
predictions than do more complex algorithms
(Jiménez-Valverde et al. 2011b), predictability did
not vary (Bioclim) or was slightly lower (Mahalanobis
distance) when restricting the projections. In the
light of these results, it is evident that the selection of
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Fig. 5. Predicted habitat suitability for Pleurobranchaea maculata based on Maxent_0.5 (blue), Bioclim (yellow) and both algo-
rithms (red) in the main suitable areas: (a) southwestern Atlantic (invaded range), (b) Australia and New Zealand (native
range), (c) North and Baltic Seas, (d) Sea of Japan, (e) northwestern Atlantic and (f) southeastern Atlantic. Suitability is based
on models calibrated using both native and invasive data and thresholded to presence/absence maps using the maximum
 training sum of sensitivity and specificity (maxSSS) criteria. Results are averages over 10 replicate runs for each model. Grey
 circles indicate the occurrence records of P. maculata in both the invaded and the native ranges. Black scale indicates 500 km

Modeling algorithm Evaluation parameter
Boyce index AUC

Bioclim 0.753 ± 0.083 0.953 ± 0.013
Mahalanobis distance 0.727 ± 0.090 0.998 ± 0.001
Maxent 0.938 ± 0.048 0.961 ± 0.009
Maxent_0.5 0.907 ± 0.054 0.965 ± 0.017

Table 3. Boyce index and the area under the receiver oper-
ating curve (AUC) for the different modeling algorithms.
Selected final models are marked in bold. Values are means 

± SD over 10 replicate runs for each algorithm
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the best modeling approach depends on the aim of
the modeling procedure. Moreover, the ability of
models to predict invasions within novel environ-
mental conditions comes at the cost of generating
broader predictions that may increase the probability
of producing commission errors (i.e. predicting suit-
able conditions that are unsuitable). In the context of
biological invasions, preventive strategies rely on
early detection and rapid response (Gallien et al.
2010, Jiménez-Valverde et al. 2011a); hence, the use
of conservative models, which maximize predictabil-
ity, may be preferred. Otherwise, expansion and
enlargement can lead to the underestimation of the
invasion risk (Rodrigues et al. 2016). On the other
hand, when a species has been introduced and all
managing efforts are directed to control its local and
regional spread, the use of models that maximize
accuracy is recommended.

In this work, we explored how novel environments
affected the accuracy and predictability of different
modeling approaches. Indeed, environmental avail-
ability plays a key role in the distribution of species
(Martínez et al. 2017). A better understanding of the
conceptual and methodological framework underly-
ing SDMs will enhance their accuracy and reliability
in predicting the potential distribution of invasive
species, helping to make the measures to prevent
their introduction more effective. Our results show
that regions such as the North Sea, southern Africa

and the Sea of Japan have environmental conditions
that resemble those that represent the RN, and there-
fore are regarded as suitable for the establishment of
P. maculata by both SDMs, regardless of their accu-
racy and predictability levels. In other regions, such
as the northwestern Atlantic, the Black Sea and the
Baltic Sea, the environmental conditions are consid-
ered suitable only by the SDM with larger values of
predictability (Maxent), mainly because they do not
represent the current RN of P. maculata, but may cor-
respond to part of their hitherto inaccessible FN.
Besides the implications that the presence of TTX
may represent within these areas, P. maculata may
interfere with pre-existing ecological interactions,
altering the trophic networks through predation over
other invertebrates or through competition with
other predators and scavengers. Many of these areas
represent closed or semi-enclosed seas, but never-
theless share many marine species with the native
and/or the in vaded ranges that are considered inva-
sive in some of those regions, such as Carcinus mae-
nas (Linnaeus, 1758), Undaria pinnatifida (Harvey)
Suringar, 1873, Ascidiella aspersa (Müller, 1776),
Ciona intestinalis (Linnaeus, 1767), Rapana venosa
(Valenciennes, 1846) and Mnemiopsis leidyi A. Agas-
siz, 1865, among others.

Although we have only considered physical and
oceanographic variables in this work, other factors
including biological interactions such as competition
or predation, or the local availability of certain re -
sources, can significantly condition the shape and
extent of the RN. Particularly in the case of toxin-
resistant organisms, toxin concentration and avail-
ability in the environment can be crucial for their
populations to grow and reproduce successfully.
The ability to resist the noxious effects of toxins
often allows them to consume resources that are not
available to other organisms, and the accumulation
of these chemicals can also act as a predator deter-
rent for both adult individuals and their offspring,
for prey capture and even for both intra- and inter-
specific signaling (Ferrer & Zimmer 2013). The
recent detection of locally available neurotoxins in
the exotic P. maculata (N. Farías unpubl. data), which
were undetected in the native range, suggests that
niche en largement occurred not only at the cli-
matic level but also in terms of other re sources. The
 relevance of P. maculata as a potential vector of
neurotoxins for humans, especially children, along
coastal environments highlights the importance of
providing new perspectives, such as those provided
in this work, directed to prevent its spread locally
and worldwide.
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Fig. 6. Permutation test of variable importance for the differ-
ent algorithms. For Bioclim and Mahalanobis distance, the
percentage drop in the Boyce index estimator is shown,
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Environmental variables are defined in Table 1 
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